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Abstract

A parametric super element model for cable passing through multiple pulleys is presented in this study for the static
analysis of structures. The amounts of cable passages over pulleys are introduced as additional degrees-of-freedoms in
the finite element model and the relationship between cable tensions at the two sides of each pulley is imposed based on
the friction law or empirical data. The proposed finite element model is firstly verified by a simple pulley cable system
and then applied to the analysis of real complex engineering structures. The verification results satisfy the static equi-
librium and deformation compatibility conditions of the structural system and basic engineering principles. With the
application of the proposed super element model, the global deformation and stress distribution for structures with
multiple-pulley cable systems can be effectively and accurately computed. Numerical results for structural analysis show
that the effect of friction of pulleys on the cable tensions is significant and the friction-free and fixed models both give
unrealistic and incorrect results in cable tensions in some cases.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Even the most complex and advanced structures are built out of certain simple structural components.
One such component is the pulley cable system, which is widely used in cars, cranes, robots, fitness equip-
ment, guyed and suspended structures. Structural simplicity, compactness, low friction and the abilities to
absorb shock and transfer forces are some of the advantages for using cable pulley systems.
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The ability of distributing and transferring load over a long distance through a complex geometric path
is probably the most significant benefit for applying multiple-pulley cable systems. In this case, the net force
is distributed across multiple cables or many loops of a continuous cable with multiple pulleys, and the ten-
sion in the each cable segment can thus be reduced. For this reason, multiple pulley-cable systems are used
in the hoisting and luffing systems of cranes (Shapiro et al., 1991), where continuous cables, passing through
or looping around many pulleys mounted on crane structures, link the payload and the boom structure to
winches. This advantage is also applied at shipbuilding industry, as it will be discussed later in this paper,
where spreader beams with cables passing through multiple pulleys are designed to spread forces to many
lift points at ship structures.

Methods of static and dynamic analysis and the behavior of cables were thoroughly studied by Ozdemir
(1979), Fried (1982), Leonard (1988), Gosling and Korban (2001). With respect to the modeling of cable
passing through a pulley, Aufaure (1993, 2000) proposed finite element models to study the deformation
of electric transmission lines/cables based on the assumption of the equal tensions in the cable segments
at the two sides of a pulley. In real case, friction exists between bearings and the shaft and between the cable
and the pulley surface (Ravikumar and Chattopadhyay, 1999 and Singru and Modak, 2001), resulting in
different tensions at the two side of a pulley. Similar frictional effects on rigging slings in heavy lift system
were also investigated by Choo et al. (1997), Lee et al. (2003) and Ju (1999).

In actual application, a cable may pass through multiple pulleys to transmit power and force from an
engine or winch to other parts of the system, and the analysis of whole structural system should be inte-
grated with an appropriate representation of such multiple-pulley cable system. If friction between pulleys
and cable is negligible, the tensions at each segment of a cable should be the same, while the presence of
friction consequently requires the cable tensions at two sides of a pulley to be at a certain ratio governed
by the friction law. In this regard, the pulley cable system functions as both a structural component and a
link constraint. The objective of this study is to develop an effective finite element scheme for the multiple-
pulley cable system including the frictional effect which can be effectively integrated in the global structural
analysis.

In this paper, a super element model including the frictional effect between cables and pulleys is pre-
sented for the static analysis of the global structural behaviour with multiple-pulley cable system. The
amounts of cable passages (including slips) over pulleys are introduced as new unknowns in addition to
the nodal translations in the element displacement vector. Each sub-element in the super-element model
is essentially simplified as a linear tensile element, and the relationship between the forces in two adjacent
sub-elements on the two sides of a pulley is then imposed based on the friction law or empirical data. The
super element can be considered parametric in the sense that the number of pulleys linked to a continuous
cable is a parameter in the formulations of element matrices and, once it is programmed in a software sys-
tem, can be readily used as a normal element model without any difficulties. The advantage of parametric
representation makes this super element model effective in computation and application.

Verification for the proposed finite element model is made by a simple pulley cable system, followed by
the application and discussion of this finite element model in the numerical analysis of tower crane system
and complex lifting system with pulley spreader beams. The verification results satisfy the static equilibrium
and deformation compatibility conditions of the structural system and basic engineering principles. Numer-
ical results for real applications show that the friction between the cable and pulleys has a significant effect
on the cable tensions. The friction-free and fixed models both give unrealistic and incorrect results in cable
tensions in some case. The proposed finite element model for the pulley cable system integrates tension ra-
tios due to the frictional effects and deformation compatibility of the whole structural system into the com-
putational process and, therefore, effective and accurate.

The basic assumption in this study lies on the fact that the axial load at the cable system is dominant in
heavily loaded system, and each cable segment between two pulleys is straight and elastic. The bending or
contact effect of cable over pulleys is neglected in this study to focus on the global effects of the pulley cable
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system. For the analysis of the detailed interaction between a cable and a pulley, a global-local approach
may be adopted, and the present model can provide the global response with enough accuracy for a detailed
local analysis.

2. Finite element formulations

Fig. 1 shows a continuous cable passing through multiple intermediate pulleys, while the centres of these
pulleys connect to other structural members and experience elastic deformations. It can be seen that the
pulleys are n — 2 in number. The whole system can be considered as a super element with » nodes and
n — 1 segments or sub-elements. The normal nodal displacements are indicated as d,;, d,;, d.; (i = 1,n) in
the figure. The cable may pass from one side of a pulley to the other side due to the rotation of pulley, fric-
tional slip of cable over pulley, or both of them. The amount of cable passed from one side is equal to that
received at the other side and termed as cable passage around a pulley denoted as s; (i = 2,7 — 1) as shown
in Fig. 1. It can be seen that, if the two ends of the cable are connected to fully-constrained structure mem-
bers or equipment without any rigid body movement or slip, the amount of cable passed at a pulley is actu-
ally a part of the elastic deformation of the whole cable. Physically, this kind of cable passage is a natural
way in the system to mobilize the forces at the two sides of a pulley.

2.1. Sub-element analysis

The objective of the sub-element analysis in this section is to establish the relationship between nodal
displacements and nodal forces of sub-element, which will be used later to form the stiffness matrix of
the super element.

Fig. 2 shows a typical sub-element with the two end nodes i and i + 1 located at (x;,y;,z;) and (X;41, Vit1,
Zi+1), respectively. The subscripts in the figure denote for nodes while superscripts for sub-elements. For
example, fx(l’il represents the x component of the nodal force at node i+ 1 of the ith sub-element, while
u; simply the axial deformation at node i. This convention will be kept in this study.

To simplify the analysis, the dimension of the pulley is neglected in the element configuration but is con-
sidered in building up the relationship between the forces at the two sides of pulleys. Based on this simpli-
fication, the centres of the pulley are taken as the nodes for the super element, and deformations of the
pulley centres are therefore the same as those at the node where two segments of cable are meet. The nodal
displacements and forces in both local sub-element and global coordinate systems are shown in the figure.

(n-1)

°n

Fig. 1. A pulley-cable super element with n nodes.
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Fig. 2. Components of nodal displacements and forces in a typical sub-element.

Since the cable can only take axial tension, the relationship of nodal displacements and force can be
established as:

Ui
fi(i) KD @ { u; + 8; } 50 [ 1 -1 1 -1 Ui (1a)
. = i R = a
fl.(ﬁl S Uiyl + i1 -1 1 -1 1 S;
Sit1

where fim, u;, s; and f,.(f], uit+1, Si+1 are the axial force, deformation and the cable passages at nodes i and
i + 1, respectively. The nominal stiffness of the sub-element k" is defined as:

(1b)

where E¥, A9 and L'” are the Young’s modulus, area of cross section and length of the sub-element.
Transforming nodal forces and displacements from local sub-element coordinates to global coordinates

gives:
{f,-“) } _ [W 0 ] { F/ } (2a)
o f Lo o w,
and
u; A9 0 0 01 ( A
w0 2V 0 0f Ay (2b)
S; 0 0 1 0 S;
Sit1 0 0 0 1 Sit1
where {F 5”}, {F% }, {A;} and {A;4;} are the nodal force and displacement vectors at the global coordinate

system as shown in Fig. 2 defined by

[ ] i h 1T i i i i T
F=[A 70 2), ® =72 2% 7] (2)
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and

{Az} = [5)([ 5}*[ 52[]T7 {Ai+1} = [5xi+l 5yi+l 5zi+1 ]T7 (2d)
with

[20) = [AF;') A0 0 (2¢)

and the directional cosines of the sub-element given as:

20— Xit1 — Xi

x LO
() _ Yit1 — Vi

)Ly ==, (2f)
() _ Zi+l — Zi

= Lo

By substituting Egs. (2a) and (2b) into Eq. (1a) and using the orthogonal property of the transformation
matrix, the following element matrix equation is obtained:

A;
(Fr} [ ok ] e )
V0 DR S ORI ORI SIS A PR I
Si+1 ) gx1
where
[kS)Ahx} = kOO T[A0] (3b)
and
(K}, = KO0 (3¢)

Considering the force equilibrium conditions at each nodes, following equation for the super element can
be obtained:

A
{F}Snxl = [KAA KAS ]3n><(4n2){ S } ) (4)
(4n—2)x1

where {F};,.; and {A}3,. are the conventional nodal forces and displacements of the super element,
(K403 and [K 43,0, Which are respectively assembled from Egs. (3b) and (3c), are:

T
-k kU +kG 0
—kfj _k(AT)
Kaa] = k(Y + k) (4a)
N
0 I R VR 3
L _k(AHZI k(Anz)\ 1 3nx3n
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-k}
k) + kG kY 0
k7 kP +k —k Y
(K] = -k} ki, 4 kG, ki (4b)
ki K kG kG
0 SR SRR
L _kg:) 4 3nx(n-2)
and {S},; is the vector of cable passages at all the nodes defined by
(St =152 85—+ 82 s (4c)

It can be seen from Eq. (4) that, due to the presence of cable passages, n more equations are needed to
make the relationship between nodal forces and displacements complete. These additional equations can be
established by considering the force relationship between the forces in the cable at the two sides of a pulley.

2.2. Relationship of tensions at two sides of a pulley

Fig. 3 shows the tensions in the cable around a pulley with or without slip between the drum and cable.
Neglecting the inertia effect of the pulley, the relationship between the tensions at the two sides on verge of
slipping or slipping is given by Euler’s equation as

T2 = OCTI (58.)
with the tension ratio o given as
o =e" (5b)

where u is the coefficient of friction and 6 is the contact angle as indicated in Fig. 3. Detailed derivation of
the above equations can be found in Beer and Johnston (1996). This tension ratio « can also be obtained
empirically and referred as “loss coefficient” by Shapiro et al. (1991).

Eq. (5a) will be applied to build the relationship between forces in the two adjacent sub-elements.

dlipping
rotating

/]

Ty T,

Fig. 3. Cable passing through a pulley.
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Fig. 4. Forces relationship of two sub-elements around a pulley.

Considering the forces at node i where sub-elements i — 1 and i are connected to the ith pulley as shown
in Fig. 4. Substituting Eq. (2b) into Eq. (1a), the nodal axial forces can be expressed as:

A;
(@) (@) (@) .
! oA — 1 —1]]A
f’(_) _go| M A ! (6a)
9 S S B i
Sit1

Similarly, for sub-element (i — 1), the same relationship is
Aiy
(i-1) (i-1) (i-1) .
- ; A —2 I -1 A,
flill _ k(z—l) . . (6b)
£ =20 | s
Si

Based on Eq. (5a), the relationship between the axial forces in the two sub-elements at node i can be
expressed as:

fi(i) _ _O(ifi(i_l) (78.)

where the negative sign results from the convention of force in the sub-element and «; is dependent on the
coefficient of friction and contact angle at the pulley defined by Eq. (5b).
Substituting £ and £"" from Eqs. (6a) and (6b) into Eq. (7a) gives:
0= [_a_k(l‘*l)l(ifl) kDAY L p 00 g @@ g (=D g (=D 4 g _k(i)] b
1 1 1 1 7
X [AH A A sio1 S Si }T ( )

or

0=[-ouk!/" ok Y+ kY kY —kY kD 4 k0 0]
X[AH A A sior s SHI}T
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with
[k}] = k9[2%] (7d)
Summating Eq. (7¢c) for i=2 to n — 1 gives:
A
{0}(n—2)><1 = [Kyu KSS}(n72)><(4n72) S (8)
(4n—2)x1
where
okl k) +k3 '
—ok k() K -k 0
K] = —okly " ok K k)
0 T SR SRR k7
I —e ik o kG R kG ]
(8a)
and
'azk(l) +k(2) —k® 7
_%k(Z) oc;k(z)—l—km yAC) 0
(K] = LAY A LR A
0 —O(,,,zk(ﬂ_3) Oﬂnfzk(n_3)+k<n_2) _k(n—2)
L IY o B L R Ll (1—2)x(n—2)
(8b)

2.3. Super element formulations

Summarizing Egs. (8) and (4) gives the final relationship of between the general nodal displacements and
forces:

(). el
0 (4n—2)x1 R (4n—2)x1

where the stiffness matrix of the super element is

KA A4 KAS
K- | ]
K,YA Kss

with [K 4], [Ksl, [Kes] and [K,] given Eqgs. (4a), (4b), (8a) and (8b), respectively.

It can be seen from Eqgs. (8a) and (4b) that, with the presence of friction between the cable and pulley, the
stiffness matrix [K]is generally unsymmetrical. This matrix will become symmetrical if the frictional effect is
negligible since [K ;] = [K,,4]" when o« = 1.

(9a)
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3. Verifications and applications

In this section, one simple example of a cable passing through multiple pulleys is firstly discussed to ver-
ify the proposed super-element model, followed by two real examples to illustrate the application of this
model in structural analysis. The diameter and Young’s modulus of the cables are assumed to be 26 mm
and 50kN/mm?, respectively.

3.1. A continuous cable passing through fixed pulleys

Static analysis of a continuous cable passing two pulleys, as shown in Fig. 5, is used to verify the pro-
posed super element formulations, where one end of the cable may be considered to be connected to a
winch with a pulling force of p and the other end to a structure member or a payload. It can be seen that
this super element consists of four nodes and three sub-elements with two passage degrees-of-freedom de-
noted respectively as s, and s3. The force and displacement boundary conditions are also indicated in the
figure.

Applying Eq. (9) to this case, following relationship between nodal forces and displacements can be
established:

Six 0 0 0 0 0 0 0 0 0 0 7 (on
fiy o Y o -V 0 0 0 0 —kWU 0 51y
S 0 0 0 0 0 0 0 0 0 0 9
fzy 0o —xb o k(l)Jrk(Z) 0 k@ 0 0 kV_r@ e 52y
fal [0 0 0 0 K0 =Yoo 0 k) o U (10)
fo[ |0 0 0 —&? o ¥ 0 0o i —k® 53y
S 0 0 0 0 k¥ 0 ¥ o0 0 —k® Oan
fay 0 0 0 0 0 0 0 0 0 0 day
0 0 —okV 0 kW -k 0 k? 0 0 wkV+ir® k@ 85
0 10 0 0 ok® Y k@ k0 —wk? kP kY] | s
S, f2y
A
52)(:0@ . f2><
5 = 2 Fixed
2y —
|_(2)
L Sub-element
Sub-element Fo R
-element
3T—>f3x T—»fm(:p
i 4
y \\EQ F|>I<Ied L® 0
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63)(:0 4)(
X 8, =0 8,,=0
8 »
1x=0
8, =0 1T—> fi
T

Fig. 5. A continuous cable passing through two fixed pulleys.
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where o, and o5 are the tension ratio at the two pulleys as indicated in Eqs. (5a) and (7a) and k) is the
nominal stiffness of the sub-element defined by

kK = Ed4/LY (10b)

with E, 4 and L (i = 1,2,3) being the Young’s modulus, area of cross section and the lengths of the sub-
elements, respectively.
Substituting force and displacement boundary conditions into Eq. (10a) yields:

p ) 0 —k® b
0% = 0 062k<1) + k@ —k® < 5 (10c)
0 G —Ot3k(2> OC3k(2) + k3 3
Solving above equation gives the following results for displacement and cable passages:
Sy = P
O(zOCgk(l)
p p
§3 = +
’ 06206316(1) OC3k(2> (10d)
_» PP
0= ok k@ T
Furthermore, nodal forces can be obtained from Eq. (10a) as
ﬁx = 07 .fly = _—p
003
p p
=0: =4+
S =0; [y s + o (10e)
w4
f3x = —D; f3y =
o3

The results show that the tension at sub-element 2 reduces to p/as due to the friction loss at lower pulley
and tension at sub-element 3 further reduces to p/o,03 because of frictional effect at upper pulley. The cable
passage at upper pulley, s,, equals to the elongation of sub-element 1, and that at lower pulley, 53, equals to
the elongation of sub-elements 2 and 3. The displacement at node 1, 9, is the axial displacement of the
whole cable. If the friction at pulleys is small enough to be neglected, the tension ratios will be 1, resulting
in equal tensions at all sub-elements. It can be seen that these results satisfy the static equilibrium and defor-
mation compatibility conditions and engineering principles and, therefore, valid.

3.2. Structural analysis of tower crane including multiple-pulley cable systems

The quasistatic behaviour of a luffing tower crane is analyzed in this section to illustrate the application
of the proposed element model for multiple-pulley cable system. Fig. 6a schematically shows the critical
members and dimensions of the tower crane. It can be seen that the hoisting cable connects a load to a
winch at location D through pulleys B and C, and the luffing cable connects jib structure, passing through
the pulley J, to a winch at location K. As shown in Fig. 6b, most of the structural members are modeled as
space frame elements and the counter weights and payload are modeled as lump mass. Two multiple-pulley
cable elements proposed in this study are use to model the hoisting and luffing cables. Assuming the pay-
load is being lifted up at a uniform speed, or it is intended to be lifted up with just enough tension from the
winch to overcome the gravity and friction, the relationship among the tensions of the segments of the
hoisting cable may be simply assumed as:
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Table 1
Cable tensions of tower crane in quasistatic analysis®
Assumption on tension ratio Hoisting cable Luffing cable

Tas (W) Tpc (W) Tcep (W) Ty (W) Tk (W)
oy = 1.00; o = 1.00 (friction-free) 1.00 1.00 1.00 2.27 2.27
o = 1.20; on = 1.05 1.00 1.20 1.26 2.39 2.51
Fixed cable 1.00 2.64 3.60 1.01 3.04

% W is the weight of the payload.

Table 1 gives the tension at each segment of the hoisting and luffing cables in this quasistatic analysis
with various assumptions on the tension ratio. For the friction-free assumption with o; = o, = 1.0, tension
at each segment of the cable is equal. If each segment of the cables is assumed as fixed members, which can
be modeled as linear truss or beam elements, the axial tensions of these segments will be purely determined
by the global equilibrium condition and deformation compatibility of the structure without any imposed
relationships among these forces. These are two extreme cases of the real structural behaviour.

In real case, the presence of friction at pulleys results in unequal tensions at the two adjacent segments of
the cables as shown in the table with the corresponding deformed shape of the full model showing in Fig.
6b. A bigger tension ratio adopted at pulley B is due to the fact that hoisting cable normally goes many
rounds around the pulley array at the tip of the jib (Shapiro et al., 1991) and even a slight friction accumu-
latively induces a significant effect on cable tensions. For instance, if the hoist cable goes five rounds around
pulley B and the coefficient of friction is as small as 0.006, the tension ratio can be as large as 1.20 based on
Euler’s equation (from Eq. (5b), o = e*%°®2™ ~ 1.21). It can be seen from the table that the effect of fric-
tion of pulleys on the cable tensions is significant and the friction-free and fixed models both give unrealistic
and incorrect results in cable tensions. One can easily understand that incorrect prediction of cable tensions
implies incorrect computational results of stresses and stiffness at some parts of the tower crane system. The
strength of the proposed super element model for the pulley cable system is at the incorporation of tension
ratios due to frictional effects and deformation compatibility of the whole structural system in an integrated
computation. Therefore, the proposed numerical model gives realistic and correct results.

3.3. Structural analysis of rigging system with pulley spreader beams

Spreader beams with multiple pulleys are used in shipbuilding and the fabrication of large marine struc-
tures. Fig. 7 shows a typical rigging system with two pulley spreader beams and 24 lift points at the top of
the deck structure. With the spreader beams in lift rigging system, compressive forces at module decks are
minimized and the concentrating force at a particular location of the structure is comparative small due to
the adoption of multiple lift points.

In the finite element analysis of this rigging system, the proposed super element model is used to model
the multiple-pulley cable systems at the spreader beam. As it is shown in the figure, one super element
consists of one continuous cable, 13 nodes and 5 fixed and 6 moveable pulleys, and therefore, 11 more de-
grees-of-freedom of cable passages over pulleys are introduced as indicated in Egs. (4) and (4c). The total
degrees-of-freedom of this super element will be 50 with 39 translations and 11 cable passages over pulley.

Table 2 gives the tensions at different segment of the cable at the two sides of pulleys. It can be seen from
the table that, if the pulleys are well lubricated with negligible frictional loss (« = 1.0), the tensions at all seg-
ment of the cable are the same and the resulting forces at lift points, passing through slings with tensions 7;
(i =1,6), are almost uniformly distributed. This is the expected outcome of using pulley spreader beams. The
global structural deformation for the case of friction-free is shown in the Fig. 7. However, the cumulative
effect of friction at pulleys on force distribution can be significant as indicated in Table 2 with a tension ratio
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Fig. 7. Finite element modelling of lift system with pulley spreader beams.

of 1.05. In this case, the coefficient of friction at pulleys is assumed to be 0.015, the tension ratio « is thus 1.05
(a0 = %1% ~ 1.05) according to Eq. (5b), and the difference between the force at inner lift point, which is
T, = 0.212 x (W/4), and that of outer lift point, which is T = 0.130 x (W/4), can be as large as 39%.
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Table 2
Cable tensions at pulley spreader rigging system®
T T, T Ty Ts Ts
Tn T 15 T T3 T3 Ty Ty Ts Ts, T Ts>
o= 1.00 0.168 0.166 0.166 0.166 0.166 0.168
0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086
o =1.05 0.212 0.189 0.172 0.156 0.141 0.130

0.110 0.105 0.100 0.096 0.091 0.087 0.083 0.079 0.075 0.071 0.068 0.065
Ty~ Tix (W/A), Ty~ Tyx (W/4); W is the weight of the structure being lifted.

From the point of view of mechanics, the pulley spreader system can be considered as enforced con-
straint of forces at structures being lifted, and the structural deformation and stress distribution are totally
different from those with conventional simply supported, fixed or even spring constraints. With the appli-
cation of the proposed super element model, the global deformation and stress distribution for structures
with multiple-pulley cable system can be effectively and accurately computed.

4. Conclusions

A parametric super element model for cable passing through multiple pulleys is proposed in this study
for numerical analysis of structures. The amounts of cable passages over pulleys are introduced as addi-
tional degrees-of-freedoms in the finite element model. The relationship between cable tensions at the
two sides of a pulley is imposed based on the friction law or empirical coefficient. The proposed model
is firstly verified by a simple cable system with three fixed pulleys and then applied to two real engineering
systems: tower crane system and lifting system with pulley spreader beams. The verification results satisfy
the static equilibrium and deformation compatibility conditions of the structural system and basic engineer-
ing principles.

Numerical results for real applications show that the effect of friction of pulleys on the cable tensions is
significant and the friction-free and fixed models both give unrealistic and incorrect results in cable tensions
in some cases. The pulley spreader system can be considered as enforced constraints of forces at structures
being lifted, and the structural deformation and stress distribution are totally different from those with con-
ventional simply supported, fixed or spring constraints. The advantage of the proposed super element mod-
el for the pulley cable system is at the incorporation of tension ratios due to frictional effects and
deformation compatibility of the whole structural system in an integrated computation. The global defor-
mation and stress distribution of whole structural system can be effectively and accurately predicted.
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